Surname	Centre Number	Candidate Number
Other Names		2

GCE AS/A level

1072/01

BIOLOGY/HUMAN BIOLOGY - BY2

P.M. TUESDAY, 15 January 2013 $1\frac{1}{2}$ hours

For Examiner's use only			
Question	Maximum Mark	Mark Awarded	
1.	9		
2.	11		
3.	10		
4.	10		
5.	10		
6.	10		
7.	10		
Total	70		

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.

Write your name, centre number and candidate number in the spaces at the top of this page.

Answer **all** questions.

Write your answers in the spaces provided in this booklet.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.

You are reminded of the necessity for good English and orderly presentation in your answers.

The quality of written communication will affect the awarding of marks.

(a) Def	fine the term <i>species</i> .				[2
					
(b) Sor	me data on biodiversity is sho	own below.			
		Ectin	nated number of ar	agaige	\neg
		Britain	nated number of sp Borneo	World	\dashv
Latitude (how far North of equator)	53°N	1° N	Wolld	_
	Fish (freshwater)	38	394	>8500	-
	Amphibians	6	100	>4000	
	Reptiles	6	105	6500	
Birds	s (breeding residents)	210	600	9881	
	Mammals	48	288	4327	
(i) (ii)	Using the table above, the Britain was calculated as 0 reptiles found in Borneo.	e percentage of	the world's species	s of reptiles four	
(iii)	Describe how the data ab		e general pattern o	of biodiversity ac	cros [1

- (i) Suggest, by marking an **X** on the phylogenic tree above, the position of an ancestor common to *Penthetor lucasi* and *Cynopterus sphinx* but not common to *Mops mops*. [1]
- (ii) What do the latin names of *Cynopterus brachyotis* and *Cynopterus sphinx* tell us about their classification? [1]

- (d) The wings of bats show similar morphology to the flippers of seals but have completely different morphology to the wings of insects. State the terms applied to structures that show
 - (i) common structure but different functions; [1]
 - (ii) common functions but different structures. [1]

1072

© WJEC CBAC Ltd. (1072-01) Turn over.

2.	In ar	nimals	s gas exchange occurs across respiratory surfaces.	
	(a)		cribe three properties that all respiratory surfaces must possess and e must have them.	explain why
		Prop	perty	
		Rea	son	
		•····		
		Prop	perty	
		Rea	son	
		.		
		•••••		
		Prop	perty	
		Rea	son	
	(b)		Flat-headed Frog, <i>Barbourula kalimantanensis</i> , is found in fast-flowing ams and is the only known lungless frog.	g mountain
		(i)	Suggest how this frog carries out gas exchange without lungs.	[1]
		(ii)	How do the conditions in the mountain stream aid gas exchange?	[2]
		(iii)	Give two reasons why gills do not function effectively on land.	[2]
		·····		
		·····		
		•••••		

(c)	Define counter-current flow as seen in the gills of bony fish, and explain why counter current flow makes gas exchange more efficient. [3]	Examiner only
		11

© WJEC CBAC Ltd. (1072-01) Turn over.

	s labelled A-D on the photomicrograph of a root.	
Α	В	
C	D	
		A B C D
b) Name the tissue s	shown in the photomicrograph above which	No
is strengthened w	vith lignin	
is strengthened w		

	me water moves across the root cortex through the vacuolar pathway, from vacuole to cuole of adjacent cells.	Examino only
(i)	Name and describe two other pathways by which water moves across the root cortex. [4]	1
	Name of pathway	
	Description	
	Name of pathway	
	Description	
(ii)	How does the Casparian strip affect the route water takes into the stele? [1]	
		.

4. Insects are amongst the animals best adapted to life on land. Their exoskeleton provides a protective waterproof covering, however it creates a problem for growth. The diagrams below show how insects' reproductive strategies help to overcome this problem.

(a)	(i)	Name the types of life cycle shown above.	[1]
	A	B	
	(ii)	Name the stages X and Y shown in the life cycles above.	[1]
	X	Y	
(b)		e why having an exoskeleton is a problem for growth and explain how the probrowing with an exoskeleton is overcome in life cycle A.	[3]
(c)		tiles and birds are adapted to reproduce on land by producing amniote e cribe two features of an amniote egg.	eggs. [2]

(d)	The development of embryos takes place internally in mammals. List three ways in which this is an advantage over externally laid eggs. [3]	only
		10

© WJEC CBAC Ltd. (1072-01) Turn over.

5. The graph below shows the relationship between partial pressure of oxygen and the percentage saturation of haemoglobin in the blood of a human **adult**.

(a) (i) State the name given to the curve shown on the graph below. [1]

(ii) Draw another curve on the axes below showing the relationship for **human foetal** haemoglobin. [1]

(iii) 	Explain the advantage of the position of the curve for human foetal haemoglobin [2	
(i)	What would happen to the curve for adult haemoglobin if the partial pressure of carbon dioxide increased?	
(ii)	What is the name of this effect?	
(iii)	Explain the mechanism and the significance of this effect during exercise. [4	·]

Turn over.

6. The photograph below shows the scolex (head region) of an adult tapeworm (*Taenia solium*).

[www.k-state.edu, original photograph by S.J. Upton]

(a)	Defi	ne the term <i>parasite</i> . [2]
(b)	(i)	Identify two structures shown in the photograph above which are adaptations to allow the tapeworm to survive in the gut of a human. [1]
	(ii)	Explain how the two structures you have identified in part (b)(i) help the adult tapeworm to survive. [2]

(c)	Tapeworms have no mouth or digestive system.					
	State why the adult tape worm does not need a digestive system and explain how tape-like shape of the worm's body enables it to feed without a mouth or gut.	the [3]				
•••••						
(a	Describe how the tapeworm's reproductive strategy helps to ensure its survival.	[2]				
•••••		•••••				
		·····•				
		•••••				

7.	Answer	r one of the following questions.			
	Any diagram included in your answer must be fully annotated.				
	Either,	(a)	Give an account of the sequence of events that takes place during the digestion and absorption of a meal containing carbohydrate and protein. [10]		
	Or	(b)	Describe how the sequence of events that takes place during the cardiac cycle is initiated and controlled. [10]		
		••••••			

Examiner only

Examiner only

END OF PAPER

10